Skip to main content

Scala's for comprehension transformation flatMap, map for the resting developer

I recently published this in stackoverflow, enjoy
Our plan
I'm not a scala mega mind so feel free to correct me, but this is how I explain the flatMap/map/for-comprehension saga to myself!
To understand for comprehension and it's translation to scala's map / flatMap we must take small steps and understand the composing parts - map and flatMap. But isn't scala's flatMapjust map with flatten you ask thyself! if so why do so many developers find it so hard to get the grasp of it or of for-comprehension / flatMap / map. Well, if you just look at scala's map and flatMap signature you see they return the same return type M[B] and they work on the same input argument A (at least the first part to the function they take) if that's so what makes a difference?
Our plan
  1. Understand scala's map.
  2. Understand scala's flatMap.
  3. Understand scala's for comprehension.`
Scala's map
scala map signature:
map[B](f: (A) => B): M[B]
But there is a big part missing when we look at this signature, and it's - where does this A comes from? our container is of type A so its important to look at this function in the context of the container - M[A]. Our container could be a List of items of type A and our map function takes a function which transform each items of type A to type B, then it returns a container of type B (or M[B])
Let's write map's signature taking into account the container:
M[A]: // We are in M[A] context.
    map[B](f: (A) => B): M[B] // map takes a function which knows to transform A to B and then it bundles them in M[B]
Note an extremely highly highly important fact about map - it bundles automatically in the output container M[B] you have no control over it. Let's us stress it again:
  1. map chooses the output container for us and its going to be the same container as the source we work on so for M[A] container we get the same M container only for B M[B] and nothing else!
  2. map does this containerization for us we just give a mapping from A to B and it would put it in the box of M[B] will put it in the box for us!
You see you did not specify how to containerize the item you just specified how to transform the internal items. And as we have the same container M for both M[A] and M[B] this means M[B]is the same container, meaning if you have List[A] then you are going to have a List[B] and more importantly map is doing it for you!
Now that we have dealt with map let's move on to flatMap.
Scala's flatMap
Let's see its signature:
flatMap[B](f: (A) => M[B]): M[B] // we need to show it how to containerize the A into M[B]
You see the big difference from map to flatMap in flatMap we are providing it with the function that does not just convert from A to B but also containerizes it into M[B].
why do we care who does the containerization?
So why do we so much care of the input function to map/flatMap does the containerization into M[B] or the map itself does the containerization for us?
You see in the context of for comprehension what's happening is multiple transformations on the item provided in the for so we are giving the next worker in our assembly line the ability to determine the packaging. imagine we have an assembly line each worker does something to the product and only the last worker is packaging it in a container! welcome to flatMap this is it's purpose, in map each worker when finished working on the item also packages it so you get containers over containers.
The mighty for comprehension
Now let's looks into your for comprehension taking into account what we said above:
def bothMatch(pat:String,pat2:String,s:String):Option[Boolean] = for {
    f <- mkMatcher(pat)   
    g <- mkMatcher(pat2)
} yield f(s) && g(s)
What have we got here:
  1. mkMatcher returns a container the container contains a function: String => Boolean
  2. The rules are the if we have multiple <- they translate to flatMap except for the last one.
  3. As f <- mkMatcher(pat) is first in sequence (think assembly line) all we want out of it is to take f and pass it to the next worker in the assembly line, we let the next worker in our assembly line (the next function) the ability to determine what would be the packaging back of our item this is why the last function is map.
  4. The last g <- mkMatcher(pat2) will use map this is because its last in assembly line! so it can just do the final operation with map( g => which yes! pulls out g and uses the f which has already been pulled out from the container by the flatMap therefore we end up with first:
    mkMatcher(pat) flatMap (f // pull out f function give item to next assembly line worker (you see it has access to f, and do not package it back i mean let the map determine the packaging let the next assembly line worker determine the container. mkMatcher(pat2) map (g => f(s) ...)) // as this is the last function in the assembly line we are going to use map and pull g out of the container and to the packaging back, its map and this packaging will throttle all the way up and be our package or our container, yah!

Comments

Popular posts from this blog

Functional Programming in Scala for Working Class OOP Java Programmers - Part 1

Introduction Have you ever been to a scala conf and told yourself "I have no idea what this guy talks about?" did you look nervously around and see all people smiling saying "yeah that's obvious " only to get you even more nervous? . If so this post is for you, otherwise just skip it, you already know fp in scala ;) This post is optimistic, although I'm going to say functional programming in scala is not easy, our target is to understand it, so bare with me. Let's face the truth functional programmin in scala is difficult if is difficult if you are just another working class programmer coming mainly from java background. If you came from haskell background then hell it's easy. If you come from heavy math background then hell yes it's easy. But if you are a standard working class java backend engineer with previous OOP design background then hell yeah it's difficult. Scala and Design Patterns An interesting point of view on scala, is

Alternatives to Using UUIDs

  Alternatives to Using UUIDs UUIDs are valuable for several reasons: Global Uniqueness : UUIDs are designed to be globally unique across systems, ensuring that no two identifiers collide unintentionally. This property is crucial for distributed systems, databases, and scenarios where data needs to be uniquely identified regardless of location or time. Standardization : UUIDs adhere to well-defined formats (such as UUIDv4) and are widely supported by various programming languages and platforms. This consistency simplifies interoperability and data exchange. High Collision Resistance : The probability of generating duplicate UUIDs is extremely low due to the combination of timestamp, random bits, and other factors. This collision resistance is essential for avoiding data corruption. However, there are situations where UUIDs may not be the optimal choice: Length and Readability : UUIDs are lengthy (typically 36 characters in their canonical form) and may not be human-readable. In URLs,

Bellman Ford Graph Algorithm

The Shortest path algorithms so you go to google maps and you want to find the shortest path from one city to another.  Two algorithms can help you, they both calculate the shortest distance from a source node into all other nodes, one node can handle negative weights with cycles and another cannot, Dijkstra cannot and bellman ford can. One is Dijkstra if you run the Dijkstra algorithm on this map its input would be a single source node and its output would be the path to all other vertices.  However, there is a caveat if Elon mask comes and with some magic creates a black hole loop which makes one of the edges negative weight then the Dijkstra algorithm would fail to give you the answer. This is where bellman Ford algorithm comes into place, it's like the Dijkstra algorithm only it knows to handle well negative weight in edges. Dijkstra has an issue handling negative weights and cycles Bellman's ford algorithm target is to find the shortest path from a single node in a graph t